All of these JavaScript functions are exposed in the global context for ease of use. Hyperlinks lead to plots in two dimensions of the real and imaginary parts of functions on the real and imaginary axes, as well as visualizations in three dimensions of the real and imaginary parts and their absolute value on the complex plane.


Basic Functions

abs( x ) — absolute value of a real or complex number

arg( x ) — argument of a real or complex number

pow( x, y ) — power of a real or complex number to a real or complex exponent

root( x, y ) — root of a real or complex number with real or complex degree

sqrt( x ) — square root of a real or complex number


Logarithmic Functions

exp( x ) — exponential of a real or complex number

log( x ) — natural logarithm of a real or complex number

log( x, base ) — logarithm of a real or complex number to a real or complex base

ln( x ) — natural logarithm of a real or complex number

lambertW( x ) — principal branch of the Lambert W-function of a real number

lambertW( k, x ) — real branches of the Lambert W-function of a real number for k = −1 or k = 0


Circular Functions

sin( x ) — sine of a real or complex number

cos( x ) — cosine of a real or complex number

tan( x ) — tangent of a real or complex number

cot( x ) — cotangent of a real or complex number

sec( x ) — secant of a real or complex number

csc( x ) — cosecant of a real or complex number

arcsin( x ) — inverse sine of a real or complex number

arccos( x ) — inverse cosine of a real or complex number

arctan( x ) — inverse tangent of a real or complex number

arccot( x ) — inverse cotangent of a real or complex number

arcsec( x ) — inverse secant of a real or complex number

arccsc( x ) — inverse cosecant of a real or complex number

sinc( x ) — cardinal sine of a real or complex number


Hyperbolic Functions

sinh( x ) — hyperbolic sine of a real or complex number

cosh( x ) — hyperbolic cosine of a real or complex number

tanh( x ) — hyperbolic tangent of a real or complex number

coth( x ) — hyperbolic cotangent of a real or complex number

sech( x ) — hyperbolic secant of a real or complex number

csch( x ) — hyperbolic cosecant of a real or complex number

arcsinh( x ) — inverse hyperbolic sine of a real or complex number

arccosh( x ) — inverse hyperbolic cosine of a real or complex number

arctanh( x ) — inverse hyperbolic tangent of a real or complex number

arccoth( x ) — inverse hyperbolic cotangent of a real or complex number

arcsech( x ) — inverse secant of a real or complex number

arccsch( x ) — inverse hyperbolic cosecant of a real or complex number


Bessel Functions

besselJ( n, x ) — Bessel function of the first kind of real or complex order n of a real or complex number

besselJZero( n, m )mth zero of the Bessel function of the first kind of positive order n

besselJZero( n, m, true )mth zero of the first derivative of the Bessel function of the first kind of positive order n

besselY( n, x ) — Bessel function of the second kind of real or complex order n of a real or complex number

besselYZero( n, m )mth zero of the Bessel function of the second kind of positive order n

besselYZero( n, m, true )mth zero of the first derivative of the Bessel function of the second kind of positive order n

besselI( n, x ) — modified Bessel function of the first kind of real or complex order n of a real or complex number

besselK( n, x ) — modified Bessel function of the second kind of real or complex order n of a real or complex number

hankel1( n, x ) — Hankel function of the first kind of real or complex order n of a real or complex number

hankel2( n, x ) — Hankel function of the second kind of real or complex order n of a real or complex number

airyAi( x ) — Airy function of the first kind of a real or complex number

airyAiPrime( x ) — derivative of the Airy function of the first kind of a real or complex number

airyBi( x ) — Airy function of the second kind of a real or complex number

airyBiPrime( x ) — derivative of the Airy function of the second kind of a real or complex number

sphericalBesselJ( n, x ) — spherical Bessel function of the first kind of real or complex order n of a real or complex number

sphericalBesselY( n, x ) — spherical Bessel function of the second kind of real or complex order n of a real or complex number

sphericalHankel1( n, x ) — spherical Hankel function of the first kind of real or complex order n of a real or complex number

sphericalHankel2( n, x ) — spherical Hankel function of the second kind of real or complex order n of a real or complex number


Orthogonal Polynomials

hermite( n, x ) — Hermite polynomial of real or complex index n of a real or complex number

laguerre( n, x ) — Laguerre polynomial of real or complex index n of a real or complex number

laguerre( n, a, x ) — associated Laguerre polynomial of real or complex index n and real or complex argument a of a real or complex number

legendreP( l, x ) — Legendre polynomial of real or complex index l of a real or complex number

legendreP( l, m, x ) — associated Legendre polynomial of real or complex indices l and m of a real or complex number

sphericalHarmonic( l, m, θ, φ ) — spherical harmonic of integer indices l and m and real numbers. Returns a complex number even if the result is purely real.

chebyshevT( n, x ) — Chebyshev polynomial of the first kind of real or complex index n of a real or complex number

chebyshevU( n, x ) — Chebyshev polynomial of the second kind of real or complex index n of a real or complex number


Elliptic Integrals

ellipticF( x, m ) — incomplete elliptic integral of the first kind of a real or complex number with real or complex elliptic parameter

ellipticF( m ) — complete elliptic integral of the first kind of a real or complex elliptic parameter

ellipticK( m ) — complete elliptic integral of the first kind of a real or complex elliptic parameter

ellipticE( x, m ) — incomplete elliptic integral of the second kind of a real or complex number with real or complex elliptic parameter

ellipticE( m ) — complete elliptic integral of the second kind of a real or complex elliptic parameter

ellipticPi( n, x, m ) — incomplete elliptic integral of the third kind of a real or complex number with real or complex characteristic and elliptic parameter

ellipticPi( n, m ) — complete elliptic integral of the third kind of a real or complex elliptic characteristic and parameter

jacobiZeta( x, m ) — Jacobi zeta function of a real or complex number with real or complex elliptic parameter, with the first argument of the same type as for elliptic integrals


Elliptic Functions

sn( x, m ) — Jacobi elliptic sine of a real or complex number with real or complex elliptic parameter

cn( x, m ) — Jacobi elliptic cosine of a real or complex number with real or complex elliptic parameter

dn( x, m ) — Jacobi delta amplitude of a real or complex number with real or complex elliptic parameter

am( x, m ) — Jacobi amplitude of a real or complex number with real or complex elliptic parameter

ellipticNome( m ) — elliptic nome q of a real or complex elliptic parameter

jacobiTheta( n, x, q ) — Jacobi theta function n of a real or complex number with real or complex nome q

weierstrassRoots( g2, g3 ) — Weierstrass roots e1, e2 and e3 for real or complex invariants. Returned as an array.

weierstrassHalfPeriods( g2, g3 ) — Weierstrass half periods w1 and w3 for real or complex invariants. Returned as an array.

weierstrassInvariants( w1, w3 ) — Weierstrass invariants g2 and g3 for real or complex invariants. Returned as an array.

weierstrassP( x, g2, g3 ) — Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.

weierstrassPPrime( x, g2, g3 ) — derivative of the Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.

inverseWeierstrassP( x, g2, g3 ) — inverse of the Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.


Hypergeometric Functions

hypergeometric0F1( a, x ) — confluent hypergeometric function of a real or complex number and real or complex argument

hypergeometric1F1( a, b, x ) — Kummer confluent hypergeometric function of a real or complex number and real or complex arguments

hypergeometric2F1( a, b, c, x ) — Gauss hypergeometric function of a real or complex number and real or complex arguments


Gamma Functions

factorial( n ) — factorial of a real or complex number

factorial2( n ) — double factorial of a real or complex number

binomial( n, m ) — binomial coefficient of real or complex numbers

logGamma( x ) — logarithm of the gamma function of a real or complex number

gamma( x ) — gamma function of a real or complex number

gamma( x, y ) — upper incomplete gamma function of real or complex numbers

gamma( x, 0, y ) — lower incomplete gamma function of real or complex numbers

gamma( x, y, z ) — generalized incomplete gamma function of real or complex numbers

beta( x, y ) — beta function of real or complex numbers

erf( x ) — error function of a real or complex number

erfc( x ) — complementary error function of a real or complex number


Zeta Functions

zeta( x ) — Riemann zeta of a real or complex number

dirichletEta( x ) — Dirichlet eta of a real or complex number

bernoulli( n ) — Bernoulli number for index n


Miscellaneous Functions

chop( x ) — set real and complex parts smaller than 10−10 to zero

chop( x, tolerance ) — set real and complex parts smaller than tolerance to zero

kronecker( i, j ) — Kronecker delta δij for integer arguments

piecewise( [ function, [begin,end] ], … ) — piecewise expression defined on an arbitrary number of subdomains returned as a function