struve_L( n , z )
The modified Struve function of z in SageMath. A solution of the nonhomogeneous differential equation
\[ \frac{d^2 f}{dz^2} + \frac{1}{z} \frac{df}{dz} - \left[ 1 + \frac{n^2}{z^2} \right] f = \frac{ \left( \frac{ z }{ 2 } \right)^{n-1} } { \sqrt{\pi} \: \Gamma \left( n + \frac{ 1 }{ 2 } \right) } \]The second linearly independent solution of this equation is currently not implemented.
Related to struve_H by
\[ \operatorname{ \mathbf{L} }_n (z) = -i e^{ -i \pi n / 2 } \operatorname{ \mathbf{H} }_n (iz) \]Plot on the real axis:
Series expansion about the origin:
Special values:
Related functions: struve_H
Function category: Bessel functions sagemath-docs