zetaderiv( n , z )
The nth-order derivative of the Riemann zeta function of z in SageMath. Defined by
\[ \zeta^{(n)} (z) = (-1)^n \sum_{k=2}^\infty \frac{ \ln^n k }{ k^z } \]Plot on the real axis:
Series expansion about the origin:
Special values:
Related functions: zeta
Function category: zeta functions sagemath-docs